26 research outputs found

    Optimizing non-natural protein function with directed evolution

    Get PDF
    Developing technologies such as unnatural amino acid mutagenesis, non-natural cofactor engineering, and computational design are generating proteins with novel functions; these proteins, however, often do not reach performance targets and would benefit from further optimization. Evolutionary methods can complement these approaches: recent work combining unnatural amino acid mutagenesis and phage selection has created useful proteins of novel composition. Weak initial activity in a computationally designed enzyme has been improved by iterative rounds of mutagenesis and screening. A marriage of ingenuity and evolution will expand the scope of protein function well beyond Mother Nature's designs

    Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes

    Get PDF
    Transition metal–catalyzed transfers of carbenes, nitrenes, and oxenes are powerful methods for functionalizing C=C and C–H bonds. Nature has evolved a diverse toolbox for oxene transfers, as exemplified by the myriad monooxygenation reactions catalyzed by cytochrome P450 enzymes. The isoelectronic carbene transfer to olefins, a widely used C–C bond–forming reaction in organic synthesis, has no biological counterpart. Here we report engineered variants of cytochrome P450_BM3 that catalyze highly diastereo- and enantioselective cyclopropanation of styrenes from diazoester reagents via putative carbene transfer. This work highlights the capacity to adapt existing enzymes for the catalysis of synthetically important reactions not previously observed in nature

    Structure-guided engineering of Lactococcus lactis alcohol dehydrogenase LlAdhA for improved conversion of isobutyraldehyde to isobutanol

    Get PDF
    We have determined the X-ray crystal structures of the NADH-dependent alcohol dehydrogenase LlAdhA from Lactococcus lactis and its laboratory-evolved variant LlAdhA^(RE1) at 1.9 Å and 2.5 Å resolution, respectively. LlAdhA^(RE1), which contains three amino acid mutations (Y50F, I212T, and L264V), was engineered to increase the microbial production of isobutanol (2-methylpropan-1-ol) from isobutyraldehyde (2-methylpropanal). Structural comparison of LlAdhA and LlAdhA^(RE1) indicates that the enhanced activity on isobutyraldehyde stems from increases in the protein's active site size, hydrophobicity, and substrate access. Further structure-guided mutagenesis generated a quadruple mutant (Y50F/N110S/I212T/L264V), whose K_M for isobutyraldehyde is ∌17-fold lower and catalytic efficiency (k_(cat)/K_M) is ∌160-fold higher than wild-type LlAdhA. Combining detailed structural information and directed evolution, we have achieved significant improvements in non-native alcohol dehydrogenase activity that will facilitate the production of next-generation fuels such as isobutanol from renewable resources

    Mutating a Highly Conserved Residue in Diverse Cytochrome P450s Facilitates Diastereoselective Olefin Cyclopropanation

    Get PDF
    Cytochrome P450s and other heme-containing proteins have recently been shown to have promiscuous activity for the cyclopropanation of olefins using diazoacetate reagents. Despite the progress made thus far, engineering selective catalysts for all possible stereoisomers for the cyclopropanation reaction remains a considerable challenge. Previous investigations of a model P450 (P450BM3) revealed that mutation of a conserved active site threonine (Thr268) to alanine transformed the enzyme into a highly active and selective cyclopropanation catalyst. By incorporating this mutation into a diverse panel of P450 scaffolds, we were able to quickly identify enantioselective catalysts for all possible diastereomers in the model reaction of styrene with ethyl diazoacetate. Some alanine variants exhibited selectivities that were markedly different from the wild-type enzyme, with a few possessing moderate to high diastereoselectivity and enantioselectivities up to 97 % for synthetically challenging cis-cyclopropane diastereomers

    Structure-Guided Directed Evolution of Highly Selective P450-Based Magnetic Resonance Imaging Sensors for Dopamine and Serotonin

    Get PDF
    New tools that allow dynamic visualization of molecular neural events are important for studying the basis of brain activity and disease. Sensors that permit ligand-sensitive magnetic resonance imaging (MRI) are useful reagents due to the noninvasive nature and good temporal and spatial resolution of MR methods. Paramagnetic metalloproteins can be effective MRI sensors due to the selectivity imparted by the protein active site and the ability to tune protein properties using techniques such as directed evolution. Here, we show that structure-guided directed evolution of the active site of the cytochrome P450‐BM3 heme domain produces highly selective MRI probes with submicromolar affinities for small molecules. We report a new, high‐affinity dopamine sensor as well as the first MRI reporter for serotonin, with which we demonstrate quantification of neurotransmitter release in vitro. We also present a detailed structural analysis of evolved cytochrome P450‐BM3 heme domain lineages to systematically dissect the molecular basis of neurotransmitter binding affinity, selectivity, and enhanced MRI contrast activity in these engineered proteins

    General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH

    Get PDF
    To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by- case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisomerases (KARIs). Combining previous results for an engineered NADH-dependent variant of Escherichia coli KARI with available KARI crystal structures and a comprehensive KARI-sequence alignment, we identified key cofactor specificity determinants and used this information to construct five KARIs with reversed cofactor preference. Additional directed evolution generated two enzymes having NADH-dependent catalytic efficiencies that are greater than the wild-type enzymes with NADPH. High-resolution structures of a wild-type/variant pair reveal the molecular basis of the cofactor switch

    Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity

    Get PDF
    Engineered metalloproteins constitute a flexible new class of analyte-sensitive molecular imaging agents detectable by magnetic resonance imaging (MRI), but their contrast effects are generally weaker than synthetic agents. To augment the proton relaxivity of agents derived from the heme domain of cytochrome P450 BM3 (BM3h), we formed manganese(III)-containing proteins that have higher electron spin than their native ferric iron counterparts. Metal substitution was achieved by coexpressing BM3h variants with the bacterial heme transporter ChuA in Escherichia coli and supplementing the growth medium with Mn3+-protoporphyrin IX. Manganic BM3h variants exhibited up to 2.6-fold higher T1 relaxivities relative to native BM3h at 4.7 T. Application of ChuA-mediated porphyrin substitution to a collection of thermostable chimeric P450 domains resulted in a stable, high-relaxivity BM3h derivative displaying a 63% relaxivity change upon binding of arachidonic acid, a natural ligand for the P450 enzyme and an important component of biological signaling pathways. This work demonstrates that protein-based MRI sensors with robust ligand sensitivity may be created with ease by including metal substitution among the toolkit of methods available to the protein engineer.National Institutes of Health (U.S.) (NIH Grant R01-DA28299 )National Institutes of Health (U.S.) (NIH NRSA Fellowship (Award F32-GM087102))California Institute of Technology (Caltech Jacobs Grant

    A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo

    Get PDF
    Whole-cell catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a cytochrome 'P411' with unique serine-heme ligation that catalyzes efficient and selective olefin cyclopropanation in intact Escherichia coli cells. The mutation C400S in cytochrome P450_(BM3) gives a signature ferrous CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting-state FeIII-to-FeII reduction potential and substantially improves NAD(P)H-driven activity

    Circulating concentrations of vitamin D in relation to pancreatic cancer risk in European populations

    Get PDF
    Evidence from in vivo, in vitro and ecological studies are suggestive of a protective effect of vitamin D against pancreatic cancer (PC). However, this has not been confirmed by analytical epidemiological studies. We aimed to examine the association between pre-diagnostic circulating vitamin D concentrations and PC incidence in European populations. We conducted a pooled nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Nord-TrĂžndelag Health Study's second survey (HUNT2) cohorts. In total, 738 primary incident PC cases (EPIC n = 626; HUNT2 n = 112; median follow-up = 6.9 years) were matched to 738 controls. Vitamin D [25(OH)D2 and 25(OH)D3 combined] concentrations were determined using isotope-dilution liquid chromatography-tandem mass spectrometry. Conditional logistic regression models with adjustments for body mass index and smoking habits were used to estimate incidence rate ratios (IRRs) and 95% confidence intervals (95%CI). Compared with a reference category of >50 to 75 nmol/L vitamin D, the IRRs (95% CIs) were 0.71 (0.42-1.20); 0.94 (0.72-1.22); 1.12 (0.82-1.53) and 1.26 (0.79-2.01) for clinically pre-defined categories of ≀25; >25 to 50; >75 to 100; and >100 nmol/L vitamin D, respectively (p for trend = 0.09). Corresponding analyses by quintiles of season-standardized vitamin D concentrations also did not reveal associations with PC risk (p for trend = 0.23). Although these findings among participants from the largest combination of European cohort studies to date show increasing effect estimates of PC risk with increasing pre-diagnostic concentrations of vitamin D, they are not statistically significant
    corecore